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We introduce a unified variational framework in which the classical balance models
for nearly geostrophic shallow water as well as several new models can be derived.
Our approach is based on consistently truncating an asymptotic expansion of a near-
identity transformation of the rotating shallow-water Lagrangian. Model reduction is
achieved by imposing either degeneracy (for models in a semi-geostrophic scaling) or
incompressibility (for models in a quasi-geostrophic scaling) with respect to the new
coordinates.

At first order, we recover the classical semi-geostrophic and quasi-geostrophic
equations, Salmon’s L1 and large-scale semi-geostrophic equations, as well as a one-
parameter family of models that interpolate between the two. We identify one member
of this family, different from previously known models, that promises better regu-
larity – hence consistency with large-scale vortical motion – than all other first-order
models. Moreover, we explicitly derive second-order models for all cases considered.
While these second-order models involve nonlinear potential vorticity inversion and
do not obviously share the good properties or their first-order counterparts, we
offer an explicit survey of second-order models and point out several avenues for
exploration.

1. Introduction
In a series of articles, Salmon proposed new approximate models for nearly geostro-

phic flow in a layer of shallow water (1983, 1985), and in a layer of stratified fluid
of finite depth (1996). The derivation is an example of variational asymptotics: all
approximations are performed on the Lagrangian of the parent fluid model before
Hamilton’s principle is applied to yield new equations of motion. One of the chief
advantages of this approach is that preservation of time and particle relabelling
symmetries guarantees exact conservation of a new energy and potential vorticity in
the approximate system.

Salmon’s approximation consists of two steps. First, noting that the stationary
leading-order geostrophic balance defines a submanifold in phase space, he constrains
the full Lagrangian to this ‘slow manifold’. The symplectic structure of the constrained
variational principle is typically non-canonical. Salmon therefore suggests applying, in
a second step, a near-identity transformation to simpler, possibly canonical, coordin-
ates. Although a transformation to canonical coordinates must exist, an explicit
expression can only be given to some order in the Rossby number ε, the formal small
parameter; higher-order terms are consistently dropped.
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While built-in structure preservation is clearly an attractive feature, it does not guar-
antee even well-posedness of the resulting balance models. In fact, the large-scale semi-
geostrophic (LSG) equations of Salmon (1985), as well as their generalizations to
stratified flows, turn out to be ill posed (Shepherd & Ford 2001; Ford, personal
communication 2000). In the hope of turning the LSG equations into a well-
behaved model without losing their simple structure, we noted that the second-order
generalization of LSG possesses a positive definite Hamiltonian – clearly a desirable
feature, but insufficient to guarantee existence of a flow. Regularity of potential
vorticity inversion is equally crucial, but explicitly violated in LSG.

The new idea presented here is that the two steps in Salmon’s procedure – constrain-
ing and transforming – can be reversed in order. We will start out with an arbitrary
change of coordinates which reduces to the identity when the perturbation parameter
ε vanishes. Both the transformation and the Lagrangian of the parent shallow-water
equations can thus be expanded in powers of ε and consistently truncated at the
desired order of accuracy. At this point, the transformation is completely arbitrary, so
that we can impose, order by order, conditions on the transformation that assure that
the system is constrained to a submanifold in phase space, or that the correct leading-
order balance is maintained. The advantages are threefold. (i) We can systematically
identify degrees of freedom that leave structure and formal order of the reduced model
invariant, but can be tuned to optimize desirable features such as the regularity of
the potential vorticity inversion. (ii) We have a procedure that allows us, at least in
principle, to develop higher-order models in a systematic fashion. (iii) We can study
balance models in a unified framework that includes all the classical balance models
for rotating shallow water: the semi-geostrophic and quasi-geostrophic equations,
Salmon’s L1 and LSG models, and many new ones.

In the last two decades, a large number of authors have explored the variational
route to deriving or analysing balance models for rotating fluids. Allen & Holm
(1996) derive a class of balance models by imposing second-order constraints on the
variational principle. The authors also note the distinct role of affine Lagrangians very
explicitly. Their work differs from ours in that they treat the approximation of the sym-
plectic structure and of the Hamiltonian as independent. Our point of view is that the
concept of consistently truncating a change of coordinates provides a rigid dependence
between the respective approximations; in other words, we supply a systematic way
of deriving dependences between some of Allen & Holm’s free parameters. Holm &
Zeitlin (1998) introduce the variational formulation for the quasi-geostrophic equa-
tions; independently, Bokhove, Vanneste & Warn (1998) give a derivation of the quasi-
geostrophic equations via a constrained expansion of the shallow-water variational
principle. McIntyre & Roulstone (2002) review and systematically explain the structure
of models based on workless momentum–configuration constraints, and suggest
several generalizations of classical semi-geostrophic theory. Using the language of
‘velocity splits’ coined by McIntyre & Roulstone, Wunderer (2001) and G. Roullet
(personal communication 2004) generalized Salmon’s L1 equations to second order.
Roullet’s L2 equations, being non-local in time, clearly differ from ours which do
not have non-local terms. The relative merits of the two approaches are currently
not well understood and remain to be explored. Finally, Vanneste & Bokhove
(2002) show how to translate Salmon’s variational asymptotics into asymptotics
on the corresponding Poisson structure, and also suggest a generalization to higher
order.

The present paper is laid out as follows. Section 2 reviews the two most important
models for rotating shallow water, the semi-geostrophic and the quasi-geostrophic
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equations. In § 3, we explain our new approach for a finite-dimensional linear toy
problem. In this simple situation, we have the opportunity to compare the reduced
model with explicitly computed solutions of the parent dynamics. Section 4 introduces
the Lagrangian formalism for fluids with particular emphasis on affine and
incompressible fluid Lagrangians, which will play a major role as target Lagrangians
leading to model reduction in the semi-geostrophic and the quasi-geostrophic scaling,
respectively. We discuss asymptotics in the variational principle as a means of deriving
reduced models, and give a brief derivation of Salmon’s L1 and LSG models within
this general framework.

The main part of the paper is the derivation of the following three distinct model
hierarchies.

The LSG hierarchy includes Salmon’s L1 and LSG equations at first order, as well
as a one-parameter family of models interpolating between the two. It is characterized
by the condition that the reduced Lagrangian is affine, i.e. linear in the velocities.
This implies that the resulting equation of ‘motion’ does not include time derivatives
of the velocity field u – it defines a kinematic relationship between u and the mass
configuration h. Dynamics enters via the continuity equation or, equivalently, via the
advection of potential vorticity. Since the reduced Lagrangian is always degenerate,
a Dirac constraint is implied by construction. Finally, time derivatives of u generally
enter when transforming back to physical coordinates although they are absent from
the equations of motion to any order. Section 5 details the derivation of the LSG
hierarchy for the rotating shallow-water equations.

The quasi-geostrophic hierarchy, introduced in § 6, yields the classical quasi-
geostrophic equations at first order. It is characterized by the condition that the
transformed dynamics be incompressible up to the required order. The resulting
reduced Lagrangian is always a regular incompressible fluid Lagrangian. Hence, the
dynamics resides in the momentum equation, while the continuity equation reduces
to the zero divergence condition. In physical coordinates, of course, weak compre-
ssibility is recovered.

Finally, § 7 recovers the classical semi-geostrophic equations as the first order of the
semi-geostrophic hierarchy. While the scaling is the same as for the LSG hierarchy,
the conditions we impose are subtly different. We require that the new coordinates
are canonical, and the velocity in new coordinates is equal to the geostrophic velocity
in old coordinates. Our transform generalizes the Hoskins (1975) transform at order
two and higher.

In each case, we explicitly compute to second order. At first order, only the LSG
hierarchy yields something new: a model, in a certain sense half-way between L1

and LSG dynamics, that promises superior regularity properties relative to all other
first-order models. The first-order computations in the remaining two cases yield
well-known models. However, our approach still provides a constructive derivation
for the variational formulation of quasigeostrophy, and we obtain an interpretation
of the geostrophic momentum approximation as a truncated near-identity change of
coordinates.

At second order, we derive the corresponding models of each hierarchy; in the
case of the LSG approach there is a five-parameter family of models, while the other
two hierarchies are unique at second order as well. Except for trivial examples in the
LSG hierarchy, all second-order models require nonlinear and apparently non-elliptic
potential vorticity inversion. Therefore, well-posedness and numerical implementation
are not obvious, and we mainly point out the questions that need to be asked. Thus,
with regard to second-order models, this paper raises more questions than it answers.
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In the final discussion, § 8, we point out possible approaches to second-order models
and other extensions of our ideas.

2. The classical nearly geostrophic limits
2.1. Distinguished scaling limits

We first sketch the two main distinguished scaling limits of the rotating shallow-water
equations, the semi-geostrophic and the quasi-geostrophic equations.

We take the simplest possible non-trivial case – the rotating shallow-water equations
with constant Coriolis parameter on the plane. In this model, which we regard as the
standard against which the accuracy of all other models must be judged, the evolution
of the horizontal velocity u = u(x, t) and fluid depth h = h(x, t) is governed by

∂t u + u · ∇u + f u⊥ + g∇h = 0, (2.1a)

∂th + ∇ · (hu) = 0, (2.1b)

where u⊥ = (−u2, u1), f is the Coriolis parameter, and g the constant of gravity.
We assume that h approaches a constant, and u vanishes at infinity. In all of the
following, we take f to be constant, though the fundamental ideas extend to the
general case.

We first non-dimensionalize the shallow-water equations. Let U be the horizontal
velocity scale, L the horizontal geometric length scale, and H the mean layer depth.
Throughout, we take the advective time scale T = L/U and assume that the Rossby
number ε is small, i.e.

ε =
U

f L
� 1. (2.2)

We also define the Burger number

B =
gH

f 2L2
. (2.3)

The shallow-water equations in non-dimensionalized variables then read

ε(∂t u + u · ∇u) + u⊥ +
B

ε
∇h = 0, (2.4a)

∂th + ∇ · (hu) = 0. (2.4b)

We are interested in the physical regime where the pressure gradient force balances
the Coriolis force to leading order. In other words, we seek a leading-order geostrophic
balance relation of the form

uG = ∇⊥h. (2.5)

The resulting geostrophic motion is stationary, as can be checked by substituting (2.5)
back into the continuity equation (2.4b).

There are two distinguished scaling limits that result in leading-order geostrophic
balance. If we admit order one variations in the total depth, balance requires that
B = ε. This is called the semi-geostrophic scaling. On the other hand, we can allow for
a Burger number of order one if the total depth is an O(ε) variation of a constant
mean depth. Thus, in this so-called quasi-geostrophic scaling we keep B = 1 and

h = 1 + εh1, (2.6)

so that ∇h = O(ε).
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Before proceeding further, we set up notation that is crucial later, but already
useful now. We then present traditional derivations of the next order corrections to
geostrophic balance in each of the two scalings.

2.2. Notation

Throughout this paper, we adapt conventions that are less used in the geophysical
literature, but have proved – conceptionally as well as regarding the ease of symbolic
manipulation – extremely useful. We generally view velocities as vector fields and
transformations as diffeomorphisms of the plane, avoiding explicitly working in
coordinates whenever possible. Most of the following could easily be written in
geometrically intrinsic notation; this, however, is not the point here.

First, we employ fixed-slot notation, always stating changes of variables explicitly.
Thus, if u = u(x, t) denotes the Eulerian velocity of a fluid, and η = η(a, t) the
corresponding flow map – the fluid particle initially at location a is at location
x = η(a, t) at time t – then the Lagrangian velocity of this fluid particle must be

∂tη(a, t) = u(η(a, t), t), (2.7)

which we abbreviate, throughout, by

η̇ = u ◦ η. (2.8)

In this notation, the continuity equation (2.4b) is equivalent to

h ◦ η =
1

det ∇η
, (2.9)

where derivatives are always taken with respect to the natural arguments.
Secondly, throughout this paper, we will encounter near-identity changes of coord-

inates which are eventually expanded in the perturbation parameter ε. When such
a transformation ξ ε is introduced, we endow quantities in old (physical) coordinates
with an ε subscript, and leave the corresponding quantities in the new (computational)
coordinates unsubscripted. In particular, flow maps then transform as

ηε = ξ ε ◦ η. (2.10)

Thirdly, being sloppy about the distinction between vector fields and forms, we write
an explicit ‘·’ to denote the dot product between two vectors, and no multiplication
sign for vector–matrix multiplication, which takes precedence. Thus, for example,

u · ∇vw = (∇v)T u · w = ui(∂jvi)wj . (2.11)

2.3. The semi-geostrophic equations

The semi-geostrophic equations arise from a single approximation, the geostrophic
momentum approximation, where the advected velocity, but not the advecting velocity,
is replaced by the geostrophic velocity (Eliassen 1948, 1962):

(∂t + u · ∇)u → (∂t + u · ∇)uG. (2.12)

Keeping with the conventions introduced in the previous section, we endow all
quantities in old coordinates with an ε subscript, so that the semi-geostrophic
momentum equation reads

ε(∂t + uε · ∇)∇⊥hε + u⊥
ε + ∇hε = 0. (2.13)

This equations combines with the continuity equation into a single prognostic equation
for the layer depth hε , whose remarkable structure is exposed through the so-called
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Hoskins transformation. Hoskins (1975) introduced new semi-geostrophic coordinates
via

η = ηε + ε∇hε ◦ ηε, (2.14)

where the transformation is written in terms of the Lagrangian flows, and ∇hε ◦ ηε =
(∇hε)(ηε(a, t), t). Going to Eulerian positions, the transformation ξ ε is implicitly
defined through

id = ξ ε + ε∇hε ◦ ξ ε. (2.15)

By differentiating (2.14) in time, we obtain

η̇ = u ◦ η = uε ◦ ηε + ε(∇ḣε ◦ ηε + (∇∇hε) ◦ ηεη̇ε) = ∇⊥hε ◦ ηε, (2.16)

where the last equality is due to the semi-geostrophic momentum equation (2.13). In
other words,

u = ∇⊥hε ◦ ξ ε; (2.17)

the new velocity u is equal to the geostrophic velocity in the old coordinates. Further,
(2.9) and (2.10) imply that

h = hε ◦ ξ ε det ∇ξ ε. (2.18)

The right-hand expression can be closed in geostrophic coordinates as follows. First,
taking the gradient of (2.15), using (2.17), yields

I = ∇ξ ε − ε∇u⊥, (2.19)

where I denotes the 2 × 2 identity matrix, so that

det ∇ξ ε = det(I + ε∇u⊥). (2.20)

Secondly,

∇(hε ◦ ξ ε) = (∇ξ ε)
T (∇hε) ◦ ξ ε = −(I + ε∇u⊥)T u⊥ = −u⊥ − 1

2
ε∇|u|2. (2.21)

Thus, if we define a streamfunction ψ by

hε ◦ ξ ε = ψ − 1
2
ε|∇ψ |2, (2.22)

then u ≡ ∇⊥ψ satisfies (2.17). Inserting (2.20) and (2.21) back into (2.18), we obtain

h =
(
ψ − 1

2
ε|∇ψ |2

)
det(I − ε∇∇ψ). (2.23)

Direct computation shows that the potential vorticity q = 1/h is materially conserved,
so that

(∂t + ∇⊥ψ · ∇)h = 0. (2.24)

Potential vorticity advection together with the nonlinear elliptic Monge–Ampère
equation (2.23) are a closed system for the semi-geostrophic dynamics in geostrophic
coordinates.

The Hoskins transform can also be interpreted as a Legendre transformation;
see Cullen & Purser (1984, 1989), and Benamou & Brenier (1998) for a proof of
well-posedness based on this structure.

For later reference, we remark that the conservation of potential vorticity is easily
translated back into physical coordinates. From (2.19), we infer that

I = (I + ε∇∇hε) ◦ ξ ε∇ξ ε, (2.25)
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so that

q =
1

h
=

1

hε ◦ ξ ε det ∇ξ ε

=
det(I + ε∇∇hε) ◦ ξ ε

hε ◦ ξ ε

≡ qε ◦ ξ ε (2.26)

and conservation of potential vorticity takes the form

d

dt
(qε ◦ ηε) =

d

dt
(q ◦ η) = 0. (2.27)

Moreover, the semi-geostrophic equations conserve the energy

Hε = 1
2

∫
[ε|∇hε|2 + hε]hεdx. (2.28)

Both conservation laws arise naturally when we derive the semi-geostrophic equations
variationally in § 7.

2.4. The quasi-geostrophic equations

In the second important distinguished scaling limit, the quasi-geostrophic scaling, the
Burger number is of order one, but variations of the surface amplitude are small.
When, as in (2.6), the deviation of the surface amplitude from equilibrium is denoted
by εh1, the quasigeostrophically rescaled shallow-water equations read

ε(∂t u + u · ∇u) + u⊥ + ε−1∇(1 + εh1) = 0, (2.29a)

ε∂th1 + ∇ · ((1 + εh1)u) = 0. (2.29b)

At the lowest order ε = 0, (2.29a) again yields a geostrophic balance relation,

uG = ε−1∇⊥h = ∇⊥h1. (2.30)

Substituting (2.30) back into the continuity equation (2.29b) simply confirms that uG

is divergence free. The quasi-geostrophic equations are the next order correction to
geostrophic balance. We make the ansatz

u = uG + εuA, (2.31)

where uA denotes the ageostrophic component of the velocity field, substitute into
(2.29), and collect first-order terms. The contributions from momentum and continuity
equation, respectively, are

uA = −(∂t + uG · ∇)∇h1, (2.32a)

∂th1 + ∇ · uA = 0. (2.32b)

Substituting the former equation into the latter, we obtain the quasi-geostrophic
potential vorticity equation

(∂t + uG · ∇)(h1 − �h1) = 0. (2.33)

Finally, the quasi-geostrophic equations possess the conserved ‘energy’

H = 1
2

∫ (
h2

1 + |∇h1|2
)
dx. (2.34)

3. A finite-dimensional example
As a caricature of the rotating shallow-water equations in semi-geostrophic scaling,

we consider the system of coupled harmonic oscillators

εq̈ε = −Ωqε + Jq̇ε, (3.1)
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where qε: � → �2, Jq ≡ q⊥ = (−q2, q1), and Ω = diag{ν2, ω2} is a constant diagonal
2 × 2 matrix. The corresponding Lagrangian is

Lε = 1
2
ε|q̇ε|2 − V (qε) − R(qε) · q̇ε, (3.2)

where

R(q) = 1
2
Jq, V (q) = 1

2
qT Ωq. (3.3)

Physically, this system describes the planar motion of a charged particle with harmonic
restoring forces in a magnetic field perpendicular to the plane. The mass of the particle
is ε, while all other parameters are scaled to unity.

When ε is small, both the components of qε form almost decoupled fast harmonic
oscillators. In addition, the matrix J on the right-hand side of (3.1) introduces an
additional symplectic structure independent of ε whose canonical coordinates are the
two position coordinates q1 and q2. We note that when ε = 0, this structure is the
only to survive; the corresponding Lagrangian is affine, i.e. it is linear in the velocities.

Our goal is to derive an effective equation for the slow evolution of q1 and q2

when ε is small, but different from zero. This toy model, being linear, can of course
be solved explicitly by diagonalization, and the desired answer can be obtained by
brute-force asymptotic expansion of the solution. However, the algebra involved is
already sufficiently involved that a symbolic manipulation package is very helpful.
The approach that we propose is computationally much simpler, does not depend on
the linearity of the system, and will directly carry over to the rotating shallow-water
equations.

The key idea is to introduce a near-identity change of (position) variables that
can be expanded in powers of ε, insert this expansion into the Lagrangian, truncate
to a consistent power in ε, and fix the coefficients of the transformation such that
the truncated system is affine. This last step is the crucial closure assumption: the
higher-order terms in the expansion are determined from the lower-order terms such
that the leading-order (affine) structure is maintained. A simple application of the
Hamilton principle then yields the effective equations of motion from the truncated
transformed Lagrangian. The transformation can be undone a posteriori to the order
of the approximation.

In finite dimensions, the procedure is simpler than for motion of the diffeomorphism
group. The required near-identity transformation of the positions can be written
straightforwardly as the asymptotic expansion

qε = q + εq ′ + 1
2
ε2q ′′ + O(ε3). (3.4)

We compute

R(qε) · q̇ε = 1
2

(
q⊥ + εq ′⊥ + 1

2
ε2q ′′⊥)

·
(
q̇ + εq̇ ′ + 1

2
ε2q̇ ′′) + O(ε3)

= 1
2
q⊥ · q̇ + εq⊥ · q̇ ′ + 1

2
ε2(q⊥ · q̇ ′′ + q ′⊥ · q̇ ′) + O(ε3) (3.5)

up to perfect time derivatives which are null-Lagrangians,

V (qε) = 1
2

(
q + εq ′ + 1

2
ε2q ′′)T

Ω
(
q + εq ′ + 1

2
ε2q ′′) + O(ε3)

= 1
2
qT Ωq + εqT Ωq ′ + 1

2
ε2(qT Ωq ′′ + q ′T Ωq ′) + O(ε3), (3.6)

and
1
2
ε|q̇ε|2 = 1

2
ε|q̇|2 + ε2q̇ · q̇ ′ + O(ε3). (3.7)
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Altogether, we find the expansion

Lε = L0 + εL1 + 1
2
ε2L2 + O(ε3), (3.8)

where, again dropping perfect time derivatives whenever convenient,

L0 = − 1
2
q⊥ · q̇ − 1

2
qT Ωq, (3.9)

L1 = 1
2
|q̇|2 + q̇⊥ · q ′ − qT Ωq ′, (3.10)

L2 = 2q̇ · q̇ ′ + q̇⊥ · q ′′ − q ′⊥ · q̇ ′ − qT Ωq ′′ − q ′T Ωq ′. (3.11)

The crucial step now is to impose degeneracy conditions, i.e. to choose q ′ and q ′′ that
render the truncated Lagrangian affine to first and second order. At O(ε), we must
set

q ′ = − 1
2
q̇⊥ + any function of q. (3.12)

For simplicity, we restrict ourselves to

q ′ = − 1
2
q̇⊥ + λΩq. (3.13)

This choice is motivated by the observation that q ′ vanishes – at least for a particular
value of λ – when the toy model is in ‘geostrophic balance’. With this choice of q ′, we
obtain

L1 = −
(

1
2

+ λ
)
(Ωq)⊥ · q̇ − λqT Ω2q. (3.14)

It is easily verified that the Euler–Lagrange equations for an affine Lagrangian of the
form

L = q̇ · F(q) + g(q) (3.15)

are

∇⊥ · Fq̇⊥ = ∇g, (3.16)

so that the reduced dynamics for our toy model including terms up to O(ε) reads[
1 + ε

(
1
2

+ λ
)
(ω2 + ν2)

]
q̇⊥ = (Ω + 2ελΩ2)q. (3.17)

This is a harmonic oscillator with frequency

µ = ων

√
1 + 2ελν2

√
1 + 2ελω2

1 + ε
(

1
2

+ λ
)
(ω2 + ν2)

. (3.18)

Note that the first-order contribution is independent of λ, and coincides with the
expansion of the slow eigenvalues of the full system to this order. In other words,
λ is indeed a free parameter. In the special case when λ = 1/2, the frequency given
by (3.18) is accurate even to O(ε2). This case corresponds to q ′ = 0 in (3.13) if the
dynamics were exactly following the leading-order ‘geostrophic balance’ dynamics.

Note further that the reduced dynamics does not represent the full system up
to and including O(ε) terms – the fast contributions to q1 and q2 are O(ε), but are
absent in the reduced system. Finally, the reconstruction of the solution in the original
coordinates via (3.4) adds only amplitude corrections and is therefore only of interest
with regard to the initialization of the reduced dynamics.

The second-order computation is only slightly more involved. By inserting the
first-order degeneracy condition into L2, we obtain

L2 = q̇⊥ ·
[
q ′′ + 3

4
q̈ − 1

4
Ω q̇⊥ + λ(Ω q̇)⊥]

−qT Ωq ′′ + λq̇⊥ · Ω2q − λ2(Ωq)⊥ · Ω q̇ − λ2qT Ω3q. (3.19)
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Choosing

q ′′ = − 3
4
q̈ + 1

4
Ω q̇⊥ +

(
3
4

− λ
)
(Ω q̇)⊥ (3.20)

will render L2 affine. Of course, as in the first-order degeneracy condition, we could
add arbitrary functions of q only – we will do so when we apply the method to the
rotating shallow-water equations. Staying with (3.20) for the time being, the resulting
degenerate L2 Lagrangian is

L2 = q̇ ·
[(

1
4

− λ
)
(Ω2q)⊥ +

(
3
4

− λ − λ2
)
Ω(Ωq)⊥]

− λ2qT Ω3q. (3.21)

Completing the Euler–Lagrange equations to second order yields a harmonic oscillator
equation with frequency

µ =
ων

√
1 + 2ελν2 + ε2λ2ν4

√
1 + 2ελω2 + ε2λ2ω4

1 + ε
(

1
2

+ λ
)
(ω2 + ν2) − 1

2
ε2

(
1
4

− λ
)
(ω4 + ν4) − ε2

(
3
4

− λ − λ2
)
ν2ω2

. (3.22)

By explicitly expanding in powers of ε, we can show that this expression is independent
of λ up to second order, i.e. λ remains a free parameter.

A complete analysis of this toy system for linear and nonlinear potentials, including
proofs of convergence which generalize the above observations, is provided in
forthcoming work (Gottwald & Oliver 2005; Gottwald, Oliver & Tecu 2005). We
finally remark that this system is more appropriate for illustrating the working of
our method than the elastic pendulum, which has been explored as a simple model
for atmospheric balance by Lynch (2002). Moreover, our model does not intend to
address the issue of spontaneous generation of inertia–gravity waves, which has been
studied in low-dimensional models starting with Lorenz (1980). For recent results and
a more complete history of this line of research see, for example, Vanneste (2004).

4. Variational principles in fluid dynamics
This section introduces the variational framework for equations of rotating fluid

flow. None of this material is original; the goal of this section is to collect pertinent
results in consistent notation.

4.1. Rotating shallow-water Lagrangians

Our parent system, the rotating shallow-water equations (2.4), are the equations of a
barotropic fluid with pressure function π = lnh. The configuration space is formally
the semidirect product of the group of diffeomorphisms of the plane, the space of
flow maps η, with the vector space of smooth functions, the space of densities h.

Fluid Lagrangians are invariant with respect to the tangent lift of the natural
group action on this semidirect product – simply speaking, they depend on Eulerian
velocities and advected quantities only – and can therefore be treated in the framework
of Euler–Poincaré reduction (see, e.g. Arnold & Khesin 1998; Holm, Marsden & Ratiu
1998). In practical terms, this means that the equations of motion, the Euler–Poincaré
equations, can be obtained by taking variations, fundamentally with respect to the
flow map η and vanishing at the temporal endpoints, of the action

S =

∫ t2

t1

L[u, h] dt. (4.1)

The Lagrangian variations δη induce variations of the Eulerian quantities u and h

as follows. First, taking the variational derivative δη means differentiating along a
curve on the diffeomorphism group. Hence, we can associate an Eulerian vector field
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w = w(x) via

δη = w ◦ η. (4.2)

For compressible flow, w is arbitrary, while for incompressible flow, variations of the
flow map must remain area preserving – the corresponding vector field w must be
divergence free. By differentiating (4.2) in time and taking the variational derivative
of (2.7), we obtain the so-called Lin constraint (Bretherton 1970),

δu = ẇ + ∇wu − ∇uw. (4.3)

Since h−1◦η = det ∇η, the Liouville theorem applied to the flow generated by w, where
the variational parameter is playing the role of time, directly implies the ‘continuity
equation’

δh + ∇ · (wh) = 0. (4.4)

Thus, we have a way of translating between the Lagrangian variation δη and the
associated Eulerian variations δu and δh. In practice, we will choose whichever
formulation is more convenient for the task at hand, and move freely between the
two.

As a first example, take the semigeostrophically scaled rotating shallow-water
Lagrangian (Salmon 1983),

L =

∫ [(
R + 1

2
εu

)
◦ η · η̇ − 1

2
h ◦ η

]
da

=

∫
h
[
R · u + 1

2
ε|u|2 − 1

2
h
]
dx, (4.5)

where R denotes the vector potential of the Coriolis parameter, so that ∇⊥ · R = f ≡ 1.
Plugging L into the action integral and taking variations, we find

δS =

∫ t2

t1

∫ [
δh

(
R · u + 1

2
ε|u|2 − h

)
+ h(R + εu) · δu

]
dx dt. (4.6)

Inserting the constrained variations (4.3) and (4.4), integrating by parts in space and
time, using the continuity equation ḣ + ∇ · (uh) = 0, the time independence of R, and
collecting terms, we obtain straightforwardly that

δS =

∫ t2

t1

∫
hw ·

[
(∇RT − ∇R)u − εu̇ − ε∇uu − ∇h

]
dx dt. (4.7)

Owing to identity (A 6), the terms in the square bracket yield precisely the shallow-
water momentum equation (2.4a) with semi-geostrophic scaling B = ε.

One of the main advantages of the variational route is that the conservation of
energy and potential vorticity is built into the formalism. This can be made explicit
by writing out an extended Lagrangian that separates symplectic structure from the
Hamiltonian,

L =

∫
F(u) ◦ η · η̇ − H [u, h], (4.8)

where a priori u and η̇ are treated as independent quantities; the relationship η̇ = u◦η

is recovered by taking variations in u (see, e.g. Salmon 1983). We can then show that
H is the Noetherian conserved quantity arising from time translation invariance, and
that the potential vorticity

q =
∇⊥ · F

h
(4.9)
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is the materially conserved quantity arising from the invariance under particle
relabelling (see, e.g. Ripa 1981). A fully variational derivation of the conservation
of potential vorticity involves taking variations that do not vanish at the temporal
endpoints along a trajectory satisfying the Euler–Poincaré equations of motion, so
that only boundary terms arising from integration by parts remain.

For the semigeostrophically scaled rotating shallow-water equations, the extended
Lagrangian reads

L =

∫
(R + εu) ◦ η · η̇ da − H, (4.10a)

H = 1
2

∫
[ε|u|2 + h] ◦ η da, (4.10b)

with the well-known potential vorticity

q =
1 + ε∇⊥ · u

h
. (4.11)

We now discuss two important special cases: affine Lagrangians and Lagrangians
for incompressible fluids, which will arise as Lagrangians of nearly geostrophic models
in the semi-geostrophic and the quasi-geostrophic limit, respectively. We derive general
equations of motion and the corresponding conservation laws for each.

4.2. Affine Lagrangians

Consider an affine (degenerate) Lagrangian of the form

L =

∫
(F(h) ◦ η · η̇ − g(h) ◦ η) da =

∫
h(F(h) · u − g(h)) dx, (4.12)

where F and g are arbitrary functionals of the layer depth h. We insert this Lagrangian
into the action integral and take variations with respect to η, using DF to denote the
Fréchet-derivative of F and DF∗ to denote the formal L2 adjoint thereof:

δS = δ

∫ t2

t1

∫
(F(h) ◦ η · η̇ − g(h) ◦ η) da dt

=

∫ t2

t1

∫
((δF) ◦ η · η̇ + (∇F) ◦ ηδη · η̇ + F ◦ η · δη̇

− (δg) ◦ η − (∇g) ◦ ηδη) da dt

=

∫ t2

t1

∫
((DF(h)δh) ◦ η · η̇ − Ḟ ◦ η · δη − (∇F − ∇FT ) ◦ ηη̇ · δη

− (Dg(h)δh) ◦ η − (∇g) ◦ ηδη) da dt

=

∫ t2

t1

∫
h(DF(h)δh · u − DF(h)ḣ · w − w · u⊥∇⊥ · F

− Dg(h)δh − w · ∇g) dx dt

=

∫ t2

t1

∫
(δhDF∗(h) · (hu) − hw · Ḟ − hw · u⊥∇⊥ · F

− δhDg∗(h)h − hw · ∇g) dx dt
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=

∫ t2

t1

∫
hw · (∇(DF∗(h) · (hu)) − Ḟ − u⊥∇⊥ · F

− ∇(Dg∗(h)h) − ∇g) dx dt. (4.13)

Since w is arbitrary, the vanishing of δS yields the degenerate Euler–Poincaré equation

∇(DF∗(h) · (hu)) − Ḟ − u⊥∇⊥ · F = ∇(Dg∗(h)h) + ∇g. (4.14)

Note that Ḟ = DF(h)ḣ, so that all time derivatives can be eliminated via the continuity
equation – we obtain a diagnostic relationship between h and u.

To derive the expression for the potential vorticity, we could follow the Noetherian
approach and work explicitly with the particle relabelling symmetry; see, for example,
Bridges, Hydon & Reich (2005). However, it turns out to be much easier in this case
to directly take the curl of (4.14),

∇⊥ · Ḟ + ∇ · (u∇⊥ · F) = 0, (4.15)

whence, dividing through by h and using that ḣ + ∇ · (hu) = 0, we find that the
potential vorticity

q =
∇⊥ · F(h)

h
(4.16)

is advected by the velocity field u,

∂tq + u · ∇q = 0. (4.17)

Similarly, the conservation of the Hamiltonian

H =

∫
hg(h) dx (4.18)

follows from Noether’s theorem, or can easily be verified by direct computation.

4.3. Incompressible fluid Lagrangians

We consider the general case of an incompressible, rotating fluid with a Lagrangian
of the form

L =

∫
(R + N(u)) · u dx, (4.19)

where N is a potentially nonlinear operator acting on u. We take variations that are,
as before, subject to the Lin constraint (4.3). Since the flow is incompressible, the
vector fields u and w are divergence free, so that

δS =

∫ t2

t1

∫
(R · δu + N(u) · δu + DN(u)δu · u) dx dt

=

∫ t2

t1

∫
(R + N(u) + DN∗(u)u) · δu dx dt

=

∫ t2

t1

∫
F · (ẇ + ∇wu − ∇uw) dx dt

= −
∫ t2

t1

∫
w · (Ḟ + (∇F − ∇FT )u) dx dt

= −
∫ t2

t1

∫
w · (Ḟ + u⊥∇⊥ · F) dx dt, (4.20)
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where we have used identity (A 6) in the last step, and

F ≡ R + N(u) + DN∗(u)u. (4.21)

Since w is an arbitrary divergence-free vector field, the expression in parentheses
on the right-hand side of (4.20) must be zero modulo gradients. Therefore, the
Euler–Poincaré equations of motion are

∂t F + u⊥∇⊥ · F + ∇p = 0, (4.22)

p being the pressure which is determined via the incompressibility constraint ∇·u = 0.
The corresponding potential vorticity equation is most easily obtained by taking the
curl of this expression,

(∂t + u · ∇)∇⊥ · F = 0, (4.23)

and the conserved energy takes the form

H = 1
2

∫
u · N(u) dx. (4.24)

A general computation of this type in the context of the quasi-geostrophic equations
has previously appeared in Holm & Zeitlin (1998).

4.4. Variational asymptotics: L1 and LSG dynamics

The fundamental idea, pioneered by Salmon (1993, 1985, 1996) is to derive approxi-
mate equations for nearly geostrophic flow by approximating the Lagrangian rather
than the equations of motions directly. If the approximation preserves time translation
and particle relabelling symmetries, the resulting approximate system will possess
proper analogues of the original conserved energy and potential vorticity.

In this section, we first recall the approach of Salmon, who proceeds in two steps.
He initially constrains the Hamiltonian phase space to the submanifold defined by
geostrophic motion. The resulting system is called the L1 equations. In a second step,
he introduces a near-identity change of variables that, when only keeping terms to the
same consistent asymptotic order, yields a simpler system in canonical coordinates,
the large-scale semi-geostrophic (LSG) equations.

Any imposed functional dependence u = F(h) of the Hamiltonian momentum on
the mass configuration in the extended variational principle (4.8) defines a constraint
manifold in the Hamiltonian phase space. In particular, choosing geostrophic balance

u = ∇⊥h (4.25)

as the constraint, we obtain the affine Lagrangian

Lc =

∫ [
(R + ε∇⊥h) ◦ η · η̇ − 1

2
(ε|∇h|2 + h) ◦ η

]
da. (4.26)

The resulting Euler–Poincaré equations of motion are

[1 − ε(h� + 2∇h · ∇)]u = ∇⊥[
h − ε

(
h�h + 1

2
|∇h|2

)]
, (4.27)

which, for given h, is a second-order elliptic problem for the velocity u. The
computation, using the formalism set up in § 4.2, is a special case of § 5.2; the reader
is referred to this later section for details. The corresponding potential vorticity,
computed directly from (4.16), reads

q =
1 + ε�h

h
. (4.28)
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Setting

u = ∇⊥h + uA, (4.29)

where uA is the ageostrophic part of the velocity field, and using identity (A 10), we
can rewrite (4.27) as an elliptic equation for uA,

[1 − ε(h� + 2∇h · ∇)]uA = ε
[
h�∇⊥h + 2∇h · ∇∇⊥h − ∇⊥(

h�h + 1
2
|∇h|2

)]
= ε(∇h · ∇∇⊥h − ∇⊥h�h)

= ε∇⊥h · ∇∇h. (4.30)

This coincides with Salmon’s (1985, equation 2.27) expression for the ageostrophic
velocity. We note that, at best, the ageostrophic velocity is of the same regularity class
as h; since the geostrophic velocity is a skew-gradient of h, the full inversion from h

to u therefore loses one derivative. Further, since (4.28) implies

(q − ε�)h = 1, (4.31)

and this equation is elliptic and positive as long as the initial potential vorticity is
positive, the full potential vorticity inversion gains one derivative – the functional
setting is similar to that of the two-dimensional incompressible Euler equations.

On the other hand, the L1 equations, involving variable coefficient elliptic equations,
are harder to implement numerically than two-dimensional ideal fluid equations.
Salmon (1985) therefore suggested further approximating the system by applying a
truncated near-identity transformation to canonical coordinates. The Euler–Poincaré
equations of the resulting so-called large-scale semi-geostrophic equations are

u = ∇⊥(
h + εh�h + 1

2
|∇h|2

)
, (4.32)

and the potential vorticity

q =
1

h
. (4.33)

Since both L1 and LSG arise as special cases in our setting, we will not work through
the details of the construction. Equation (4.32) shows that the advecting velocity field
is less smooth than the advected quantity. As a consequence, standard arguments
for proving well-posedness of such equations fail, and numerical simulations indicate
that the LSG equations, though much simpler than the L1 equations, are indeed ill
posed even for short times. Unfortunately, ill-posedness extends to Salmon’s (1996)
large-scale semi-geostrophic dynamics for rotating stratified flow (R. Ford, personal
communication 2000), and to Ford, Malham & Oliver’s (2002) attempt to fix the
indefiniteness of the LSG energy by adding higher-order terms.

5. The LSG hierarchy
In this section, we apply the procedure outlined in § 3 to the rotating shallow-water

equations in semi-geostrophic scaling. At first order in ε, we obtain a one-parameter
family of models that includes Salmon’s L1 and LSG equations, motivating the name
LSG hierarchy. We also carry the computation to second order, where we discuss
models with altogether five free parameters. The LSG hierarchy does not include the
Hoskins semi-geostrophic equations, even though these equations are based on the
same scaling. We take up this issue in § 7, where we present a different ansatz for
the variational asymptotics that yields the classical semi-geostrophic equations.

We are motivated by the question of whether Salmon’s idea of using truncated
transformations into convenient coordinates can be generalized in a way that does
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not necessarily lead to ill-posed models. The crucial observation is that we need
not constrain the dynamics explicitly – we can let consistent truncation to a certain
asymptotic order do all the work. If, by means of a clever choice of transformation, the
truncated system degenerates, constraints will appear naturally by the Dirac (1966)
theory of constraints. However, since all we require is a reduced set of equations, we
need not compute any constraints explicitly.

5.1. Set-up

We follow the conventions introduced in § 2.2, where uε denotes the velocity in
physical coordinates, and u the velocity in a new, yet-to-be-determined, coordinate
system. Correspondingly, hε denotes the layer depth in physical, and h the layer depth
in the new coordinate system. Then, the full semigeostrophically scaled shallow-water
Lagrangian reads

Lε =

∫ [
R ◦ ηε · η̇ε + 1

2
ε|η̇ε|2 − 1

2
hε ◦ ηε

]
da. (5.1)

Recall that the flow in each coordinate system has an associated vector field via

η̇ = u ◦ η, (5.2)

η̇ε = uε ◦ ηε, (5.3)

and that the change of coordinates is expressed by the transformation

ηε = ξ ε ◦ η. (5.4)

At this stage, the fundamental objects are still the flow maps η and ηε , and there is
no truncation to some order of ε yet. The crucial point is that we can regard ξ ε as a
flow in ε, and associate with it a vector field vε via

ξ ′
ε = vε ◦ ξ ε, (5.5)

where ξ 0 = id and the prime denotes a derivative with respect to ε.
This basic set-up is similar to, and has in fact been motivated by, the Lagrangian

averaging construction of Marsden & Shkoller (2001, 2003), which has recently been
extended to compressible fluids by Bhat et al. (2005). The difference is that in our
case there is no explicit averaging. Instead, we have the Rossby number as the natural
physical small parameter, and model reduction is achieved purely by shifting all
non-degeneracy into orders beyond those that are kept.

The task is now to expand systematically all quantities in the ‘old’ Lagrangian Lε

in powers of ε. The computations are most easily written in terms of the Taylor
coefficients of the Eulerian vector fields uε and vε , which we denote by u, u′, u′′, etc.
Appendix B summarizes the relationship between Eulerian and Lagrangian expansion
coefficients, and gives the details of the expansion of each term in the Lagrangian. In
this procedure, v, v′, and their higher-order cousins can be chosen by us, and we use
this freedom to impose degeneracy at each relevant order of the expansion.

A lengthy, but straightforward computation, the details of which are provided in
Appendix B, yields the expansion

Lε = L0 + εL1 + 1
2
ε2L2 + O(ε3), (5.6)

where

L0 =

∫ [
R ◦ η · η̇ − 1

2
h ◦ η

]
da, (5.7)
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L1 =

∫ [
v⊥ · u + 1

2
|u|2 + 1

2
h∇ · v

]
◦ η da, (5.8)

L2 =

∫ [
u · (v′ + ∇vv)⊥ + (v⊥ + 2u) · (v̇ + ∇vu)

+ 1
2
h(∇ · v′ + v · ∇∇ · v − (∇ · v)2)

]
◦ η da. (5.9)

5.2. First-order LSG models

We will now look at the first- and second-order contributions in turn, fixing v and v′

such that L1 and L2, respectively, become affine. At first order, it is immediately clear
that any choice of the form

v = 1
2
u⊥ + F(h) (5.10)

will render L1 affine. For simplicity, we restrict ourselves to the one-parameter family
of transformations

v = 1
2
u⊥ + λ∇h. (5.11)

This restriction is motivated by the observation that under geostrophic balance,
the second-order term is a scalar multiple of the first. Thus, when diagnosing
the transformation with geostrophic balance, the factor ( 1

2
− λ) is scaling the

transformation vector field linearly to leading order.
With (5.11), the first-order Lagrangian reads

L1 =

∫ [
λ∇⊥h · u + 1

4
h∇ · u⊥ + 1

2
λh�h

]
h dx

=
(
λ + 1

2

) ∫
h∇⊥h · u dx − λ

∫
h|∇h|2 dx. (5.12)

We use the general Euler–Poincaré equations (4.14) to compute the equations of
motion. In the notation of § 4.2,

F(h) = R + ε
(
λ + 1

2

)
∇⊥h, (5.13)

g(h) = λε|∇h|2 − 1
2
h, (5.14)

so that, for some scalar function φ,

DF(h)φ = ε
(
λ + 1

2

)
∇⊥φ, (5.15)

Dg(h)φ = 2λε∇h · ∇φ − 1
2
φ, (5.16)

and, for some vector field w and scalar function ψ ,

DF∗(h) · w = −ε
(
λ + 1

2

)
∇⊥ · w, (5.17)

Dg∗(h)ψ = −2λε∇ · (ψ∇h) − 1
2
ψ. (5.18)

Therefore, the terms involving F of (4.14) read

∇(DF∗(h) · (hu)) − Ḟ − u⊥∇⊥ · F

= ε
(
λ + 1

2

)
(−∇∇⊥ · (hu) + ∇⊥∇ · (hu) − u⊥∇⊥ · ∇⊥h) − u⊥∇⊥ · R

= ε
(
λ + 1

2

)
(�(hu⊥) − u⊥�h) − u⊥

=
(
ε
(
λ + 1

2

)
(h� + 2∇h · ∇) − 1

)
u⊥. (5.19)
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Similarly, the terms involving g are

∇(Dg∗(h)h + ∇g) = −∇
(
2λε∇ · (h∇h) + 1

2
h − λε|∇h|2 + 1

2
h
)

= −∇(h + λε(2h�h + |∇h|2)). (5.20)

Equating (5.19) with (5.20), we obtain[
1 − ε

(
λ + 1

2

)
(h� + 2∇h · ∇)

]
u = ∇⊥[h − ελ(2h�h + |∇h|2)]. (5.21)

Moreover, (4.16) yields the potential vorticity

q =
1 + ε

(
λ + 1

2

)
�h

h
. (5.22)

Here, λ = −1/2 corresponds to a complete loss of relative vorticity, while λ = 1/2
includes relative vorticity with the same weight as for the parent dynamics in physical
coordinates.

When λ > −1/2 and provided h and q are positive and sufficiently smooth, equation
(5.21) is not only elliptic, but its weak formulation is also coercive in the (Sobolev)
space H 1 of square integrable functions with square integrable first derivatives. This
key requisite for proving the existence of unique weak solutions via the Lax–Milgram
theorem (see, e.g. Evans 1998) is shown as follows.

We say that u ∈ H 1 solves the weak form of (5.21) if

B(u, v) =

∫
v · ∇⊥[h − ελ(2h�h + |∇h|2)] dx (5.23)

for every v ∈ H 1, where

B(u, v) ≡
∫

v · [1 − σ (h� + 2∇h · ∇)]u dx. (5.24)

Then, after integration by parts,

B(u, u) =

∫ [
u · u + σh∇u : ∇u − 1

2
σ∇h · ∇|u|2

]
dx

=

∫ [
1
2
(1 + hq)|u|2 + σh|∇u|2

]
dx, (5.25)

which defines a norm equivalent to the canonical H 1 norm so long as hq > 1 and
σh > 1, uniformly on the plane. This is true, in particular, if h, q and σ ≡ ε(λ + 1/2)
are positive and h → 1 as |x| → ∞.

We now consider three special choices for λ. When λ = 1/2, the transformation is,
a posteriori, the identity up to terms of order ε2. The equations of motion in this case
are elliptic, coercive, and given by (4.27) – we have recovered Salmon’s L1 dynamics.
In other words, Salmon’s constraint to geostrophic balance has been replaced by
choosing a transform to an affine Lagrangian that is near-identity to one order higher
than generically expected for our ansatz. Whether the L1 model is also more accurate,
perhaps by one order as for the frequency of the linear toy problem in § 3, remains to
be investigated.

When λ = −1/2, the function F which defines the symplectic structure becomes
very simple, namely F = R – the symplectic structure is canonical. This corresponds
to the case of Salmon’s LSG equations. However, the relation between h and u,
equation (4.32), ceases to be second-order elliptic and, as mentioned previously, the
resulting system of equations is ill posed. In fact, owing to the restriction on coercivity,
none of the models with λ � −1/2 can be well posed.
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Half way between L1 and LSG, when λ = 0, lies another special case. Here, both
the transformation (5.11) and the right-hand side of the Euler–Poincaré equation
(5.21) take the simplest possible form, while the left-hand side of (5.21) remains a
coercive elliptic operator with non-constant coefficients, i.e.[

1 − 1
2
ε(h� + 2∇h · ∇)

]
u = ∇⊥h, (5.26)

and the potential vorticity reads

q =
1 + 1

2
ε�h

h
, (5.27)

so that (
q − 1

2
ε�

)
h = 1. (5.28)

The remarkable consequence is that now potential vorticity inversion ‘gains’ three
derivatives, the maximum possible for first-order models of this type. Two derivatives
are gained by inverting (5.28), and one derivative is gained through the inversion of
(5.26).

We conclude that the λ= 0 case resembles the regularity type of the two-dimensional
Lagrangian-averaged Euler equations; see Holm et al. (1998) and Holm (1999) for
a derivation, and Oliver & Shkoller (2001) for their analytical properties. Although
these equations are, in principle, as difficult to solve as the L1 equations, we expect
that the built-in non-dissipative smoothing will make the new model numerically
much better behaved.

5.3. Second-order LSG models

The derivation of the second-order transformation that yields an affine L2 Lagrangian
is substantially more involved, and therefore relegated to Appendix C.

Our ansatz identifies four more naturally occurring free parameters α, β , γ and µ,
and yields

L2 = L
deg
22 −

∫
h(u⊥ + ∇h) · v′

free dx

=

∫
hu ·

[(
α + λ2 − 1

2

)
∇⊥h�h +

(
β − λ + 1

4

)
h∇⊥�h

+ (γ − 2λ + 1)∇⊥∇⊥h∇⊥h + µh−1∇⊥h|∇h|2
]
dx − H2, (5.29)

where

v′
free = α∇h�h + βh∇�h + γ ∇∇h∇h + µh−1∇h|∇h|2, (5.30)

and

H2 =

∫ [
(λ2 − β)h2(�h)2 +

(
λ2 + α − 2β − γ

2

)
h|∇h|2�h +

(
µ − γ

2

)
|∇h|4

]
dx

=

∫
h
[(

2
3
λ2 − 1

3
α − 1

3
β + 1

6
γ
)
h(�h)2

+
(

1
3
λ2 + 1

3
α − 2

3
β − 1

6
γ
)
h∇∇h : ∇∇h

+
(
µ − 1

3
λ2 − 1

3
α + 2

3
β − 1

3
γ
)
h−1|∇h|4

]
dx. (5.31)
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Our task is now to compute the equations of motion to second order, and to find
‘good’ choices for the parameters α, β , γ , λ and µ. However, before resuming the
computation, we remark on two special choices that directly yield known models.

5.4. Second-order L1 dynamics

When

α = 1
4
, β = 1

4
, γ = 0, λ = 1

2
, µ = 0, (5.32)

the L2 Lagrangian vanishes identically – the resulting dynamics in new coordinates is
still Salmon’s L1 dynamics. However, the corresponding near-identity transformation
back to ‘physical’ coordinates has a non-vanishing generating vector field at second
order, namely

v′ = − 3
4
u̇ − 3

4
∇uu − 1

4
∇u⊥u⊥ + 1

4
∇⊥∇hu + 1

4
∇u⊥∇h

+ 1
4
h�u⊥ + 1

4
∇h�h + 1

4
h∇�h, (5.33)

where we used identities (A 2), (A 3) and (A 4) to simplify the expression. We can now
solve Salmon’s L1 equation of motion and then obtain a second-order a posteriori
correction using (5.33).

5.5. Second-order LSG

We take λ = −1/2 as in Salmon’s LSG model and require that there is no contribution
to the potential vorticity at second order, i.e. the resulting symplectic structure is
canonical. This necessitates the choice

α = 1
4
, β = − 3

4
, γ = −2, µ = 0. (5.34)

Substitution into (5.29) then gives

−L2 = H2 =

∫
h2∇∇h : ∇∇h dx. (5.35)

This is precisely the L2 Lagrangian derived by Ford, Malham & Oliver (2002). In
this earlier work, we had directly followed Salmon’s procedure of first constraining
to geostrophic balance and later transforming – in this case up to second order – to
canonical coordinates. We then observed, as can also be seen from (5.35), that the
second-order contribution to the Hamiltonian is positive, which can be shown to
render the entire Hamiltonian positive definite. Although this appears to stabilize
the dynamics, the kinematic potential vorticity inversion yields advecting velocity
fields that are insufficiently smooth to generate a flow – both first- and second-order
LSG are ill posed. This example nonetheless demonstrates that the formal steps of
constraining and transforming up to a given asymptotic order commute.

5.6. Second-order Euler–Poincaré equations

We write the second-order Lagrangian (5.29) in the form

L2 =

∫
hu · [σ1 F1 + σ2 F2 + σ3 F3 + σ4 F4] dx − H2, (5.36a)

H2 =

∫
h[ρ1g1 + ρ2g2 + ρ3g3] dx, (5.36b)

where

F1(h) = ∇⊥h�h, (5.37a)

F2(h) = h∇⊥�h, (5.37b)
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F3(h) = ∇∇⊥h∇h, (5.37c)

F4(h) = h−1∇⊥h|∇h|2, (5.37d)

and

g1(h) = h(�h)2, (5.38a)

g2(h) = h∇∇h : ∇∇h, (5.38b)

g3(h) = h−1|∇h|4. (5.38c)

By direct calculation,

DF1(h)φ = ∇⊥h�φ + ∇⊥φ�h, (5.39a)

DF2(h)φ = h∇⊥�φ + φ∇⊥�h, (5.39b)

DF3(h)φ = ∇∇⊥h∇φ + ∇∇⊥φ∇h, (5.39c)

DF4(h)φ = 2h−1∇⊥h∇h · ∇φ + h−1∇⊥φ|∇h|2 − φh−2∇⊥h|∇h|2, (5.39d)

and therefore

DF∗
1(h) · w = �(w · ∇⊥h) − ∇⊥ · (w�h), (5.40a)

DF∗
2(h) · w = �∇ · (hw⊥) − w⊥ · ∇�h, (5.40b)

DF∗
3(h) · w = ∇ · (∇∇hw⊥) − ∇∇ : (∇h ⊗ w⊥), (5.40c)

DF∗
4(h) · w = ∇ · (2h−1∇hw⊥ · ∇h + w⊥h−1|∇h|2) + h−2w⊥ · ∇h|∇h|2. (5.40d)

We can now plug these expressions into the respective terms of the Euler–Poincaré
equation (4.14). For F1, we obtain

S1 ≡ ∇(DF∗
1(h) · (hu)) − DF1(h)ḣ − u⊥∇⊥ · F1

= ∇∇ · (hu⊥�h) − ∇�(hu⊥ · ∇h) + ∇⊥h�∇ · (hu)

+ ∇⊥∇ · (hu)�h − u⊥∇⊥ · (∇⊥h�h). (5.41)

Similarly,

S2 ≡ ∇(DF∗
2(h) · (hu)) − DF2(h)ḣ − u⊥∇⊥ · F2

= ∇�∇ · (h2u⊥) − ∇(hu⊥ · ∇�h) + h∇⊥�∇ · (hu)

+ ∇ · (hu)∇⊥�h − u⊥∇⊥ · (h∇⊥�h), (5.42)

and

S3 ≡ ∇(DF∗
3(h) · (hu)) − DF3(h)ḣ − u⊥∇⊥ · F3

= ∇∇ · (h∇∇hu⊥) − ∇∇∇ : (h∇h ⊗ u⊥) + ∇∇⊥h∇(∇ · (hu))

+ ∇∇⊥(∇ · (hu))∇h − u⊥∇⊥ · (∇∇⊥h∇h). (5.43)

There is a similar expression for S4 which is not used in the following.
The corresponding computation for the ‘energy’ terms yields

Dg1(h)φ = φ(�h)2 + 2h�h�φ, (5.44a)

Dg2(h)φ = φ∇∇h : ∇∇h + 2h∇∇h : ∇∇φ, (5.44b)

Dg3(h)φ = −h−2φ|∇h|4 + 4h−1|∇h|2∇h · ∇φ, (5.44c)

and

Dg∗
1(h)ψ = ψ(�h)2 + 2�(hψ�h), (5.45a)

Dg∗
2(h)ψ = ψ∇∇h : ∇∇h + 2∇∇(hψ : ∇∇h), (5.45b)
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Dg∗
3(h)ψ = −h−2ψ |∇h|4 − 4∇(h−1ψ∇h|∇h|2). (5.45c)

The corresponding terms on the right-hand side of the Euler–Poincaré equation are

r1 ≡ ∇
(
Dg∗

1(h)h + g1

)
= 2∇(h(�h)2 + �(h2�h)), (5.46)

r2 ≡ ∇
(
Dg∗

2(h)h + g2

)
= 2∇(h∇∇h : ∇∇h + ∇∇ : (h2∇∇h)), (5.47)

r3 ≡ ∇
(
Dg∗

3(h)h + g3

)
= ∇∇ · (∇h|∇h|2). (5.48)

5.7. L2 dynamics

Since Salmon’s L1 dynamics is characterized by the transformation reducing to the
identity up to terms of O(ε), it is natural to define an L2 dynamics by imposing that
the transformation reduces to the identity up to terms of O(ε2). In other words, we
demand that

vε ≡ v + εv′ = O(ε2) (5.49)

when the implicit u dependence of this expansion is expressed by a consistent
diagnostic relationship, which we derive in the following. Since

u = ∇⊥h + O(ε), (5.50)

we must set, as for Salmon’s L1 dynamics, λ = 1/2 to remove O(1) terms from
(5.49). Inserting this choice and the diagnostic relationship (5.50) into the first-order
Euler–Poincaré equation (4.27), we obtain the next order diagnostic relationship

u = ∇⊥h − ε
[
∇⊥(

h�h + 1
2
|∇h|2

)
− h�∇⊥h − 2∇h · ∇∇⊥h

]
+ O(ε2)

= ∇⊥h − ε
[
∇∇⊥h∇h − ∇⊥h�h

]
+ O(ε2). (5.51)

Similarly, we diagnose

v′ = v′
free − 3

4
∇⊥ḣ + 1

4
∇∇h∇h + ∇⊥∇⊥h∇h − 1

4
∇h�h − 1

4
h∇�h + O(ε)

= v′
free + 3

4
∇h�h − ∇∇h∇h − 1

4
h∇�h, (5.52)

so that, altogether,

vε = v + εv′

= 1
2
(u⊥ + ∇h) + εv′

= ε
[
v′

free + 5
4
∇h�h − 3

2
∇∇h∇h − 1

4
h∇�h

]
+ O(ε2). (5.53)

Thus, for this diagnostic relation to vanish at O(ε), we must require that

α = − 5
4
, β = 1

4
, γ = 3

2
, µ = 0. (5.54)

The corresponding coefficients for the second-order contributions to F are

σ1 = − 3
2
, σ2 = 0, σ3 = 3

2
, σ4 = 0, (5.55)

and therefore the full second-order contribution to F reads

3
2
(−∇⊥h�h + ∇⊥∇⊥h∇⊥h) = − 3

2
∇∇h∇⊥h. (5.56)

The full L2 potential vorticity is thus given by

q =
∇⊥ · F

h
=

1 + ε�h − 3
2
ε2∇∇h : ∇⊥∇⊥h

h
=

1 + ε�h − 3ε2 detHessh

h
, (5.57)

where the numerator is a second-order elliptic Monge–Ampère operator (see Lychagin,
Rubtsov & Chekalov 1993).



Variational asymptotics for shallow water 219

The second-order contributions to the left-hand side of the Euler–Poincaré equation
(4.14) are

3
2
∇∇ · (∇⊥u∇h2) − 3∇∇h∇⊥(∇ · (hu)) + 3

2
u⊥∇∇h : ∇⊥∇⊥h. (5.58)

Similarly, we find that the coefficients corresponding to the components of the H2

Hamiltonian (5.36b) are

ρ1 = 3
4
, ρ2 = − 3

4
, ρ3 = 0, (5.59)

so that the second-order contributions to the right-hand side of the Euler–Poincaré
equation (4.14) are

− 3
2
∇[h∇∇h : ∇⊥∇⊥h + ∇∇ : (h2∇⊥∇⊥h)]. (5.60)

Unfortunately, the resulting equation for u in terms of h is third order, not elliptic,
and cannot be written as an operator solely acting on u⊥. The natural generalization,
in our framework, of the L1 setting therefore does not appear to yield a useful model.
However, if we are prepared to make further approximations, consistent with the
order of the model, we might be able to remove all of the ‘bad’ terms at the likely
expense of losing the Hamiltonian structure.

5.8. Order limitations

We now ask more generally what order of potential vorticity inversion can be expected
from an optimal choice of parameters. There are three competing considerations:
the order of differentiation on the right-hand side of the Euler–Poincaré equation,
ellipticity and regularity of the operator on the left-hand side of the Euler–Poincaré
equation, and ellipticity and regularity of the q–h inversion.

Since the left-hand side of the Euler–Poincaré equation and the q–h inversion
are each fourth-order at best, improving on the third-order regularity of potential
vorticity inversion of the first-order model with λ = 0 requires that the right-hand side
of the Euler–Poincaré equation does not contain derivatives of the maximum order
five. These terms come from the symmetric second-order term in the H2 Hamiltonian
(5.31). We must hence require its coefficient to vanish, i.e. β = λ2 or, in the notation of
§ 5.6, ρ1 + ρ2 = 0. However, this choice immediately implies that σ2 = (λ − 1/2)2 � 0.
We note that σ2 is the coefficient multiplying S2 on the left-hand side of the Euler–
Poincaré equation, which contains all possible fourth-order terms on u. Dropping all
lower-order contributions, these terms are

σ2h
2(�∇∇ · u⊥ + �∇⊥∇ · u) = σ2h

2�2u⊥. (5.61)

After being left-multiplied by J, this expression enters the Euler–Poincaré equations
with a negative sign, causing the combined operator to lose positivity unless σ2 = 0.
In the latter case, however, the operator on the left-hand side can be elliptic of order
two at best, and the q–h inversion also can not reach maximal order.

We conclude that none of the second-order models will be able to exceed the
degree of smoothness afforded by the most regular first-order model. However, this
does not mean second-order models cannot be accurate – this question is entirely open
to investigation. Moreover, when splitting off the ageostrophic velocity component,
cancellations of higher-order terms similar to those in (4.30) occur provided that

β = 2λ2 − λ + 1
4
, (5.62)
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with the possibility that the ageostrophic velocity may be smoother than the overall
velocity field. Moreover, further approximation may also result in second-order
accurate as well as regular models.

6. The quasi-geostrophic hierarchy
The shallow-water Lagrangian in quasi-geostrophic scaling is

Lε =

∫ [
R ◦ ηε · η̇ε + 1

2
ε|η̇ε|2 − 1

2
ε−1hε ◦ ηε

]
da. (6.1)

If we expand the quasi-geostrophic Lagrangian in powers of ε, the term at O(ε−1)
reads

L−1 = − 1
2

∫
h ◦ η da. (6.2)

Taking arbitrary variations on any finite subdomain forces h = 1, i.e. the flow is
incompressible. We now seek new coordinates in which h = 1 to all orders. Thus,
the transformation cannot be area preserving, and we will be able to recover the
weakly compressible effects of the parent dynamics by changing back into physical
coordinates a posteriori. Thus, for a model in the quasi-geostrophic hierarchy, the
continuity equation will always be trivial, while the momentum equation, once higher-
order terms are included, remains prognostic. This should be contrasted with the
approach taken in the LSG hierarchy, where the leading-order defining feature is
that the Lagrangian is affine. This feature of the leading order was then imposed on
the higher-order Lagrangians, resulting in a kinematic relationship between h and
u, while the continuity equation remained a prognostic equation. In each case, the
shallow-water system is reduced to a single prognostic equation.

Once incompressibility is imposed, the L−1 contribution can be normalized out.
Collecting terms at the remaining orders gives

Lε = L0 + εL1 + 1
2
ε2L2 + O(ε3), (6.3)

with

L0 =

∫ [
R ◦ η · η̇ + 1

2
(h∇ · v) ◦ η

]
da, (6.4)

L1 =

∫ [
v⊥ · u + 1

2
|u|2 + 1

4
h(∇ · v′ + v · ∇∇ · v − (∇ · v)2)

]
◦ η da, (6.5)

L2 =

∫ [
u · (v′ + ∇vv)⊥ + (v⊥ + 2u) · (v̇ + ∇vu)

+ 1
6
h
(
∇ · v′′ + 2v · ∇∇ · v′ + v′ · ∇∇ · v − 3∇ · v∇ · v′

+ v · ∇(v · ∇∇ · v) − 3∇ · vv · ∇∇ · v + (∇ · v)3
)]

◦ η da. (6.6)

Incompressibility also allows us to considerably simplify the expanded Lagrangians.
Changing to Eulerian variables, eliminating perfect derivatives, and integrating by
parts in various terms, we find

L0 =

∫
R · u dx, (6.7)
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L1 =

∫ [
v⊥ · u + 1

2
|u|2 − 1

2
(∇ · v)2

]
dx, (6.8)

L2 =

∫ [
u · (v′ + ∇vv)⊥ + (v⊥ + 2u) · (v̇ + ∇vu) − ∇ · v∇ · v′ + 1

2
(∇ · v)3

]
dx

=

∫ [
(∇∇ · v − u⊥) · v′ + 2u · ∇vu + u · v⊥∇ · v + 1

2
(∇ · v)3

]
dx, (6.9)

where, in the last equality, we have used identity (A 7).
Variations of the L0 Lagrangian (6.7) simply confirm that u is divergence free. We

also note that the quasi-geostrophic scaling has v appear at O(1) – the change of
variables is no longer small. In the variational principle, however, this contribution
is lost as a result of imposing incompressibility, and consequently, leading-order
geostrophic balance is lost.

In the next section, we show that geostrophic balance can be restored through
conditions on v, v′, etc. from independent considerations.

6.1. Balance conditions

We first note that hε satisfies a continuity equation with respect to the change of
variables,

h′
ε + ∇ · (hεvε) = 0, (6.10)

as a direct consequence of the definitions for hε and vε . Differentiating (6.10) and
setting ε = 0, we obtain

h′ + ∇ · v = 0, (6.11)

h′′ + ∇ · v′ − ∇ · (v∇ · v) = 0, (6.12)

where once more we have used that h = 1 in the quasi-geostrophic scaling. Similarly,
noting that η̇ε = uε ◦ ηε and η′

ε = vε ◦ ηε , we find by cross-differentiation that

u′ + ∇uv = v̇ + ∇vu. (6.13)

We now substitute the power series expansions

uε = u + εu′ + O(ε2), (6.14)

hε = 1 + εh′ + 1
2
ε2h′′ + O(ε3), (6.15)

into the quasigeostrophically rescaled shallow-water equations and collect terms at
each power of ε. At order ε0, we find

u = ∇⊥h′ = −∇⊥∇ · v, (6.16)

or

v = −∇�−2∇⊥ · u. (6.17)

At order ε, the balance condition is

u̇ + ∇uu + u′⊥ + 1
2
∇h′′ = 0. (6.18)

We eliminate u′ and h′′ via (6.13) and (6.12), respectively, whence

u̇ + ∇uu + (v̇ + ∇vu − ∇uv)⊥ − 1
2
∇∇ · v′ + 1

2
∇∇ · (v∇ · v) = 0. (6.19)

The divergence of this expression then yields

1
2
�∇ · v′ = ∇u : ∇uT + ∇v⊥ : ∇uT − ∇u⊥ : ∇vT + v · ∇∇⊥ · u + 1

2
�∇ · (v∇ · v). (6.20)
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We remark that a first-order balance condition can also be derived variationally.
Take, for example, arbitrary variations of the full compressible L0 Lagrangian (6.4)
with v fixed. The resulting condition reduces to (6.16) for h = 1.

6.2. First-order quasigeostrophy

Collecting terms to first order, the truncated Lagrangian reads

L =

∫ [
R · u + ε

(
v⊥ · u + 1

2
|u|2 − 1

2
(∇ · v)2

)]
dx. (6.21)

Since u is divergence free in the new coordinates, it is convenient to set u = ∇⊥ψ for
some streamfunction ψ . Similarly, noting that only the curl-free part of v contributes
to the Lagrangian, we set v = ∇φ. In this notation,

L =

∫ [
R · ∇⊥ψ + ε

(
∇φ · ∇ψ + 1

2
|∇ψ |2 − 1

2
(�φ)2

)]
dx. (6.22)

The leading-order balance condition (6.17) implies φ = −�−1ψ , so that

L =

∫ [
R · ∇⊥ψ + ε

(
−∇�−1ψ · ∇ψ + 1

2
|∇ψ |2 − 1

2
ψ2

)]
dx

=

∫ (
R + 1

2
ε
(
u − �−1u

))
· u dx, (6.23)

and the potential vorticity equation reads

(∂t + u · ∇)(1 + ε∇⊥ · (u − �−1u)) = 0, (6.24)

or

(∂t + ∇⊥ψ · ∇)(�ψ − ψ) = 0. (6.25)

We have thus recovered the classical quasi-geostrophic potential vorticity equation
(2.33). The variational formulation (6.23) has already been noted by Holm & Zeitlin
(1998), but we believe that the constructive derivation is new.

We remark that the balance condition (6.16) is crucial to derive a meaningful model
for rotating shallow water. Choosing φ = ψ , for example, yields the Lagrangian

L =

∫ [
R · ∇⊥ψ + ε

(
∇ψ · ∇ψ + 1

2
|∇ψ |2 − 1

2
(�ψ)2

)]
dx

=

∫ (
R + ε

(
3
2
u − 1

2
�u

)
· u dx, (6.26)

and the resulting potential vorticity equation reads

(∂t + ∇⊥ψ · ∇)�
(
ψ − 1

3
�ψ

)
= 0. (6.27)

This corresponds to the Lagrangian-averaged Euler equations with α2 = 1/3, see
Holm et al. (1998), Oliver & Shkoller (2001), and references cited therein, which even
at leading order describe entirely different physics.

6.3. Second-order quasigeostrophy

To obtain the second order of the quasi-geostrophic hierarchy, we first substitute the
leading-order balance condition into the second-order quasi-geostrophic Lagrangian
(6.9). It is most convenient to work in terms of v rather than u, so that we use the
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balance condition in the form (6.16), and obtain

L2 =

∫ [
2u · ∇vu − ∇ · vv⊥ · ∇⊥∇ · v + 1

2
(∇ · v)3

]
dx

=

∫ [
2u ⊗ u : ∇v + (∇ · v)3

]
dx. (6.28)

The contribution involving v′ has dropped entirely from the Lagrangian – we need
the second-order balance condition only for the transformation back into the old
coordinate system.

To derive the potential vorticity at order ε2, it is easiest to take directly variations
of (6.28), which are again subject to the Lin constraint (4.3). Since v is curl free, the
matrix ∇v is symmetric, so that

δL2 =

∫
[4δu ⊗ u : ∇v + 2u ⊗ u : ∇δv + 3(∇ · v)2∇ · δv] dx

=

∫
[4δu · ∇vu − 2u ⊗ u : ∇∇�−2∇⊥ · δu − 3(∇ · v)2�−1∇⊥ · δu] dx

=

∫
δu · [4∇vu + 2∇⊥�−2(∇u : ∇uT ) + 3∇⊥�−1(∇ · v)2] dx

≡
∫

δu · F2 dx. (6.29)

Note that we used the leading-order balance condition (6.17) to substitute for δv in
the second step, and integrated by parts in the third. Hence, the order ε2 contribution
to the potential vorticity ∇⊥ · Fε , where

Fε = F0 + εF1 + 1
2
ε2 F2, (6.30)

must be

∇⊥ · F2 = 4∇v : (∇⊥u)T + 2�−1(∇u : ∇uT ) + 3(∇ · v)2. (6.31)

Using u = ∇⊥ψ and v = −∇�−1ψ , we can also write

∇⊥ · F2 = 3ψ2 − 4∇⊥∇⊥ψ : ∇∇�−1ψ − 2�−1(∇⊥∇⊥ψ : ∇∇ψ). (6.32)

We see that potential vorticity inversion is now nonlinear, but its regularity cannot be
of higher order than that of the standard quasi-geostrophic model. Since the operator
is not obviously elliptic, well-posedness of the second-order model remains open.

We note that there are no obvious free parameters in the quasi-geostrophic
hierarchy, even for models beyond order two.

7. The semi-geostrophic hierarchy
We finally seek to identify the Hoskins semi-geostrophic equations and higher-

order generalizations thereof within our variational framework. It may see natural
to conjecture that the semi-geostrophic equations in physical coordinates – before
the Hoskins transformation is applied – can be recovered as a particular case of the
second-order LSG hierarchy. (In fact, this conjecture provided the initial motivation
for going to second order in § 5.) It turns out, however, that this is not the case, as
can be seen by the following argument.

The semi-geostrophic potential vorticity in physical coordinates, given by (2.26),
can be recovered from our general L2 Lagrangian (5.29) by the unique choice of
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parameters

α = 3
4
, β = 1

4
, γ = − 1

2
, µ = 0, (7.1)

which determines the associated Hamiltonian completely. In particular, the second-
order contribution to Hε reads

H2 = 1
4

∫ [
3h|∇h|2�h + |∇h|4

]
dx. (7.2)

This Hamiltonian is not even sign definite, and clearly differs from the semi-
geostrophic Hamiltonian (2.28). Thus, classical semigeostrophy cannot arise as a
second-order LSG model in the sense of § 5. (Changing procedure, however, and
imposing different constraints on the symplectic structure and on the Hamiltonian,
we can indeed derive the semi-geostrophic equations as has been noted by McIntyre &
Roulstone 2002.)

On the other hand, there are two key features of semigeostrophy written in
Hoskins coordinates that we can replicate in our transformational approach. First, the
symplectic structure is canonical, so that the potential vorticity is q = 1/h. Secondly,
the transformed velocity is equal to the geostrophic velocity in old coordinates. In the
following, we show that these two conditions can be applied at any order of the asymp-
totics. The challenge, however, is closing the equations in transformed coordinates
beyond order two.

7.1. General setting

The key observation – implicit, for example, in Appendix B of Salmon (1985) – is
that

δ

∫
h2

ε dx = 2

∫
hεδhε dx = −2

∫
hε∇ · (hεwε) dx = 2

∫
hεwε · ∇hε dx, (7.3)

which, in Lagrangian coordinates, reads

δ

∫
hε ◦ ηε da = 2

∫
(∇hε) ◦ ηε · δηε da. (7.4)

We now impose that the velocity in new coordinates is equal to the old geostrophic
velocity,

u = ∇⊥hε ◦ ξ ε, (7.5)

and therefore

δ

∫
hε ◦ ηε da ≡ 2

∫
u ◦ η · δη⊥

ε da. (7.6)

Hence, we proceed as follows. We take the variation of the full non-transformed
action and apply (7.6). Only then do we expand all terms in powers of ε. We finally
impose canonical coordinates by choosing η′, η′′, etc. such that the variation of the
action, when truncated to consistent order, is of the form

δS = −
∫∫

η̇⊥ · δη da dt −
∫∫

Fε · δη da dt. (7.7)

The first term in this expression guarantees canonicity. The resulting Euler–Lagrange
equations, in connection with (7.5), then tell us that

Fε = ∇hε ◦ ηε. (7.8)
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The variations of each term in the action corresponding to the semigeostrophically
scaled Lagrangian (5.1) are

δ

∫∫
R ◦ηε · η̇ε da dt =

∫∫
η̇ε · δη⊥

ε da dt

=

∫ ∫ [
η̇ · δη⊥ + ε(η̇′ · δη⊥ + η̇ · δη′⊥)

+ ε2
(

1
2
η̇′′ · δη⊥ + η̇′ · δη′⊥ + 1

2
η̇ · δη′′⊥)]

da dt + O(ε3), (7.9)

where, in the first equality, we have used identities similar to those applied in (B 15).
Next,

1
2
εδ

∫∫
|η̇ε|2 da dt = − ε

∫∫
η̈⊥

ε · δη⊥
ε da dt

= −
∫∫

[εη̈⊥ · δη⊥ + ε2(η̈′⊥ · δη⊥ + η̈⊥ · δη′⊥)] da dt + O(ε3), (7.10)

and, using (7.6),

− 1
2
δ

∫∫
hε ◦ ηε da dt = −

∫∫
u ◦ η ·

[
δη⊥ + εδη′⊥ + 1

2
ε2δη′′⊥]

da dt + O(ε3). (7.11)

7.2. First-order semigeostrophy

We now look at each order in the variation of the action in turn. At leading order,
we recover our ansatz, since

δS0 =

∫∫
(η̇ − u ◦ η) · δη⊥ da dt = 0. (7.12)

At the next order,

δS1 =

∫∫
[(η̇′ − η̈⊥) · δη⊥ + (η̇ − u ◦ η) · δη′⊥] da dt ≡ 0. (7.13)

Therefore, we need to impose that

η̇ + η′⊥ = 0. (7.14)

Since, up to first order,

ξ ε ◦ η = ηε = η + εη′, (7.15)

substituting (7.14) into this expression yields the classical Hoskins transformation

ξ ε = id + εu⊥. (7.16)

Thus, we have recovered the semi-geostrophic equations without imposing the
geostrophic momentum approximation, but simply by systematically truncating
the Hoskins transformed variation of the action at first order. In other words,
while Hoskins (1975) combined an exact transformation with an independently
motivated approximation, our approximation lies entirely with the truncation of
the transformation. With the conservation laws already contained in our ansatz, the
non-obvious and perhaps surprising aspect of the semi-geostrophic equations is that
they can be closed in the new semi-geostrophic coordinates as explained in § 2.3.
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7.3. Higher-order semigeostrophy

At second order, we have

δS2 =

∫∫ [(
1
2
η̇′′ − η̈′⊥)

· δη⊥ +(η̇′ − η̈⊥) · δη′⊥ + 1
2
(η̇ − u ◦η) · δη′′⊥]

da dt ≡ 0, (7.17)

where, as before, only the term multiplying δη yields new information, and we find
that

1
2
η′′ − η̇′⊥ = 0 (7.18)

and therefore
1
2
η′′ + η̈ = 0. (7.19)

The corresponding second-order transformation reads

ξ ε = id + εu⊥ + ε2(u̇ + u · ∇u). (7.20)

Continuing this way, we find that

ξ ε ◦ η = ηε = η + εη̇⊥ − ε2η̈ − ε3˙̈η⊥ + ε4η(4) + . . . . (7.21)

We notice that t-derivatives of u start to appear, so that potential vorticity inversion
is non-local in time, and cannot be done in any obvious way for models of order two
or higher.

However, if we are prepared to make further approximations which potentially
destroy the Hamiltonian structure, the equations can at least formally be closed. In
particular, at second order, we can remove the time derivative by noting that

u̇ = ∇⊥ḣ + O(ε) = O(ε). (7.22)

However, at this level of approximation, the resulting system is not elliptic. Thus,
although the generalized Hoskins transformation (7.21) has a very simple structure,
it is not clear whether the corresponding models are useful or even well posed.

8. Discussion and outlook
We introduced a unified framework in which the classical balance models as well

as new ones – of the same formal order of accuracy – can be derived by consistently
truncating a near-identity change of coordinates in the variational formulation of
the rotating shallow-water equations. Model reduction is achieved by imposing either
degeneracy or incompressibility on the truncated expansion of the Lagrangian.

This approach has a number of advantages.
(i) Since all approximations are interpreted as arising through a change of

coordinates, we have a formalism for a posteriori next order correction of numerically
computed solutions.

(ii) We have derived several new models, at least one of which has promising
analytical properties.

(iii) The unified formulation provides a framework for computational bench-
marking of the different models against the full shallow-water parent model.
Future work may take a number of different directions, in particular the following.

(i) Inclusion of bottom topography, stratification, boundary conditions, and
spatial variations in the Coriolis parameter.

(ii) Can more general choices than (5.11) for the first-order transformation yield
interesting models or connections with more classical Hamiltonian approximation
theory?
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(iii) Investigation of the well-posedness of the reduced models and analytical
estimates of the modelling error.

(iv) Numerical benchmarking of the different models.
(v) Investigation of connections to Lagrangian averaging (cf. Holm 1999;

Marsden & Shkoller 2003).
(vi) Investigation of connections between our quasi-geostrophic hierarchy and the

theory of nearly incompressible flow.
(vii) Systematic study of more interesting finite-dimensional models than the simple

toy presented here.
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Rupert Ford, Georg Gottwald, Simon Malham and Matthew West. I also thank
Onno Bokhove for a thorough reading of an earlier version of the manuscript, and
Mike Cullen, David Dritschel, Michael McIntyre, Sebastian Reich, Guillaume Roullet,
Ian Roulstone, and all participants of the EPSRC network ‘Geometric methods in
geophysical fluid dynamics’ for numerous stimulating discussions, and the network
organizers for the opportunity to participate. Finally, I thank the anonymous referees
for their numerous very constructive comments.

Appendix A. Useful identities
For arbitrary, sufficiently smooth functions f , g and h, and an arbitrary vector field

u, the following identities hold:

∇⊥gu · ∇f − ∇f u · ∇⊥g = u⊥∇f · ∇g, (A 1)

∇∇ · u⊥ + ∇⊥∇ · u = �u⊥, (A 2)

∇h∇ · u⊥ + (∇⊥u)T ∇h = ∇h · ∇u⊥, (A 3)

∇⊥h∇ · u + (∇u⊥)T ∇h = ∇h · ∇u⊥, (A 4)

Further, with

I =

(
1 0
0 1

)
, J =

(
0 −1
1 0

)
, (A 5)

so that Ju = u⊥,

∇u − (∇u)T = J∇⊥ · u, (A 6)

∇⊥u⊥ + (∇u)T = I∇ · u. (A 7)

Equations (A 6) and (A 7) imply that

∇∇⊥h − ∇⊥∇h = �hJ, (A 8)

∇∇h + ∇⊥∇⊥h = �hI, (A 9)

and therefore, in particular,

∇∇⊥h∇h + ∇∇h∇⊥h = ∇⊥h�h. (A 10)

All identities can easily be verified by direct calculation.

Appendix B. Details of the expansion
The expansions of each term in the shallow-water Lagrangian is most easily written

in terms of the Eulerian vector fields u and v. Thus, we first establish relationships
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between derivatives of the diffeomorphisms ηε and ξ ε , and the corresponding vector
fields u and v. Differentiating ξ ′

ε = vε ◦ ξ ε with respect to t and ε, respectively, gives

ξ̇ ′
ε = v̇ε ◦ ξ ε + (∇vε) ◦ ξ ε ξ̇ ε, (B 1)

ξ ′′
ε = v′

ε ◦ ξ ε + (∇vε) ◦ ξ εξ
′
ε. (B 2)

Setting ε = 0 and using that, by definition, ξ ≡ ξ 0 = id and therefore ξ̇ = 0, we
obtain

ξ ′ = v, (B 3)

ξ̇ ′ = v̇, (B 4)

ξ ′′ = v′ + ∇vv. (B 5)

(Quantities without subscript are taken to be evaluated at ε = 0.) Similarly, successive
differentiation of ηε = ξ ε ◦ η gives

η′
ε = ξ ′

ε ◦ η, (B 6)

η′′
ε = ξ ′′

ε ◦ η, (B 7)

η̇′
ε = ξ̇ ′

ε ◦ η + (∇ξ ′
ε) ◦ ηη̇, (B 8)

whence, setting ε = 0,

η′ = v ◦ η, (B 9)

η′′ = (v′ + ∇vv) ◦ η, (B 10)

η̇′ = (v̇ + ∇vu) ◦ η. (B 11)

We now look at each term of the rotating shallow-water Lagrangian separately.
First, consider the Coriolis term. Since f is constant, second derivatives of R vanish,
and a straightforward Taylor expansion of R ◦ ηε about ε = 0 gives

R ◦ ηε = R ◦ η + ε(∇R) ◦ ηη′ + 1
2
ε2(∇R) ◦ ηη′′ + O(ε3). (B 12)

Thus,

R ◦ ηε · η̇ε = R ◦ η · η̇ + ε(∇R) ◦ ηη′ · η̇ + εR ◦ η · η̇′ + 1
2
ε2 R ◦ η · η̇′′

+ 1
2
ε2(∇R) ◦ ηη′′ · η̇+ε2(∇R) ◦ ηη′ · η̇′+O(ε3). (B 13)

We can pull out of this expression some full time derivatives which do not contribute
to the variational principle. For any vector w,

∂t (R ◦ η · w) = (∇R)T ◦ ηw · η̇ + R ◦ η · ẇ, (B 14)

so that

R ◦ η · ẇ + (∇R) ◦ ηw · η̇ = (∇R − (∇R)T ) ◦ ηw · η̇ + ∂t (R ◦ η · w)

= w⊥ · η̇ + ∂t (R ◦ η · w). (B 15)

Similarly, we compute, again under the assumption that f is constant (when f is
arbitrary, the additional terms that arise do not combine in the same way),

∂t ((∇R) ◦ ηη′ · η′) = (∇R)T ◦ ηη′ · η̇′ + (∇R) ◦ ηη′ · η̇′, (B 16)

so that

(∇R) ◦ ηη′ · η̇′ = 1
2
(∇R − (∇R)T ) ◦ ηη′ · η̇′ + 1

2
∂t ((∇R) ◦ ηη′ · η′)

= 1
2
η′⊥ · η̇′ + 1

2
∂t ((∇R) ◦ ηη′ · η′). (B 17)
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We now apply (B 15) with w = η′ and w = η′′, respectively, and (B 17) to rewrite
(B 13) as follows:

R ◦ ηε · η̇ε = R ◦ η · η̇ + εη′⊥ · η̇ + ε∂t (R ◦ η · η′) + 1
2
ε2η′′⊥ · η̇

+ 1
2
ε2∂t (R ◦ η · η′′) + 1

2
ε2η′⊥ · η̇′ + 1

2
ε2∂t ((∇R) ◦ ηη′ · η′) + O(ε3)

=
[
R · u + εu · v⊥ + 1

2
ε2(u · (v′ + ∇vv)⊥ + v⊥ · (v̇ + ∇vu))

]
◦ η

+ O(ε3) + Ḟ , (B 18)

where Ḟ is a total time derivative which does not contribute to the variational
principle, and will be dropped hereinafter.

Next, the kinetic energy can be expanded directly,

1
2
ε|η̇ε|2 = 1

2
ε|η̇ + εη̇′ + O(ε2)|2

= 1
2
ε|η̇|2 + ε2η̇ · η̇′ + O(ε3)

=
[

1
2
ε|u|2 + ε2u · (v̇ + ∇vu)

]
◦ η + O(ε3), (B 19)

where we have used identity (B 11) to substitute for η̇′.
Finally, the potential energy term is expanded by noting that (5.4) and (5.5) combine

to η′
ε = vε ◦ ηε . Setting Jε ≡ h−1

ε ◦ ηε , the Liouville theorem for the flow of vε reads

J ′
ε = (∇ · vε) ◦ ηεJε. (B 20)

After differentiating with respect to ε, setting ε = 0 yields the relations

J ′ = (∇ · v) ◦ ηJ

≡ σ1J, (B 21)

J ′′ = [∇ · v′ + v · ∇∇ · v + (∇ · v)2] ◦ ηJ

≡ σ2J, (B 22)

J ′′′ = [∇ · v′′ + 2v · ∇∇ · v′ + v′ · ∇∇ · v + 3∇ · v∇ · v′

+ v · ∇(v · ∇∇ · v) + 3∇ · vv · ∇∇ · v + (∇ · v)3] ◦ ηJ

≡ σ3J. (B 23)

The power series,

Jε = J
[
1 + σ1ε + 1

2
σ2ε

2 + 1
6
σ3ε

3 + O(ε4)
]
, (B 24)

is easily inverted. Setting J −1 ≡ h ◦ η, we find

hε ◦ ηε = J −1
ε

= J −1
[
1 − σ1ε +

(
σ 2

1 − 1
2
σ2

)
ε2 −

(
σ 3

1 − σ1σ2 + 1
6
σ3

)
ε3 + O(ε4)

]
= h ◦ η

[
1 − ε∇ · v − 1

2
ε2(∇ · v′ + v · ∇∇ · v − (∇ · v)2)

− 1
6
ε3(∇ · v′′ + 2v · ∇∇ · v′ + v′ · ∇∇ · v − 3∇ · v∇ · v′

+ v · ∇(v · ∇∇ · v) − 3∇ · vv · ∇∇ · v + (∇ · v)3) + O(ε4)] ◦ η. (B 25)

Appendix C. Derivation of the second-order LSG transformation
The identification of transformation which renders the L2 Lagrangian (5.9) affine

requires some preparatory work. There are three distinct groups of terms which we
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consider separately – terms involving v′, terms involving v̇, and all others:

L21 =
∫

h
(
u · v′⊥ + 1

2
h∇ · v′) dx,

L221 =
∫

h(v⊥ + 2u) · v̇dx,

L222 =
∫

h
[
u · ∇v⊥v + (v⊥ + 2u) · ∇vu + 1

2
h(v · ∇∇ · v − (∇ · v)2)

]
dx.


 (C 1)

First, using integration by parts, we can write

L21 = −
∫

h(u⊥ + ∇h) · v′ dx. (C 2)

The other terms involve v, so that we must insert our first-order ansatz (5.11). We
begin by computing

L221 =

∫
h
[(

3
2
u + λ∇⊥h

)
·
(

1
2
u̇⊥ + λ∇ḣ

)]
dx

=

∫
h
[(

3
4
u + 1

2
λ∇⊥h

)
· (u̇⊥ + ∇ḣ + (2λ − 1)∇ḣ)

]
dx

=

∫
h
[

3
4
u · (u̇⊥ + ∇ḣ) + 1

2
λ∇h · u̇ +

(
3
2
λ − 3

4

)
u · ∇ḣ

]
dx

=

∫ [
− 3

4
hu̇ · (u⊥ + ∇h) −

(
3
4

+ 1
2
λ
)
ḣu · ∇h −

(
3
4

− λ
)
hu · ∇ḣ

]
dx

=

∫ [
− 3

4
hu̇ · (u⊥ + ∇h) +

(
3
4

+ 1
2
λ
)
(u · ∇h)2 +

(
3
4

+ 1
2
λ
)
hu · ∇h∇ · u

+
(

3
4

− λ
)
hu · ∇(u · ∇h) +

(
3
4

− λ
)
hu · ∇(h∇ · u)

]
dx

=

∫
h
[
− 3

4
u̇ · (u⊥ + ∇h) + u ·

(
− 3

2
λ(∇u)T ∇h − 3

2
λ∇∇hu

+
(

3
4

− λ
)
∇h∇ · u +

(
3
4

− λ
)
h∇∇ · u

)]
dx, (C 3)

where, in the second to last step, we have used the continuity equation to eliminate
time derivatives of h. In the final step, we have used integration by parts on the
integral of (u · ∇h)2. The above computation already outlines our general strategy:
Our goal is eventually to factor out h(u⊥ + ∇h) from all expressions – this is
completed now for the u̇-term. For the remaining terms, we must first factor out hu,
and then iteratively complete to the full h(u⊥ + ∇h), starting from the terms that are
cubic in u.

To start this procedure for L222, we substitute in the expression for v and expand:

L222 =

∫
h
[(

− 1
4
u · ∇uu⊥ + 3

4
u · ∇u⊥u

)

+
(

1
2
λu · ∇∇⊥hu⊥ − 1

2
λu · ∇u∇h + 3

2
λu · ∇∇hu + 1

2
λ∇h · ∇uu

+ 1
8
hu⊥ · ∇∇ · u⊥ − 1

8
h(∇ · u⊥)2

)

+
(
λ2�hu · ∇⊥h + 1

4
λhu⊥ · ∇�h + 1

4
λh∇h · ∇∇ · u⊥ − 1

2
λh�h∇ · u⊥)

+
(

1
2
λ2h∇h · ∇�h − 1

2
λ2h(�h)2

)]
dx. (C 4)
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The simplification in the third group of terms is based on identity (A 10). We must
further integrate by parts on the term∫

h2(∇ · u⊥)2 dx = −
∫

h[hu⊥ · ∇∇ · u⊥ + 2u⊥ · ∇h∇ · u⊥] dx. (C 5)

We then set L22 = L221 + L222 and combine terms:

L22 =

∫
h
[
(u⊥ + ∇h) ·

(
− 3

4
u̇
)

+ u ·
(

3
4
∇u⊥u − 1

4
∇uu⊥)

+ u ·
(

1
2
λ∇∇⊥hu⊥ − 1

2
λ∇u∇h − λ(∇u)T ∇h +

(
3
4

− λ
)
∇h∇ · u

+
(

3
4

− λ
)
h∇∇ · u − 1

4
h∇⊥∇ · u⊥ − 1

4
∇⊥h∇ · u⊥)

+
(
λ2�hu · ∇⊥h + 1

4
λhu⊥ · ∇�h + 1

4
λh∇h · ∇∇ · u⊥ − 1

2
λh�h∇ · u⊥)

+
(

1
2
λ2h∇h · ∇�h − 1

2
λ2h(�h)2

)]
dx. (C 6)

Next in line are the terms that are cubic in u. We write

L22 =

∫
h
[
(u⊥ + ∇h) ·

(
− 3

4
u̇ − 3

4
∇uu − 1

4
∇u⊥u⊥)

+ u⊥ ·
(

1
2
λ∇⊥∇hu − 1

2
λ∇u⊥∇h +

(
3
4

− λ
)(

∇⊥u)T ∇h + 1
4
(∇u⊥)T ∇h

+
(

3
4

− λ
)
∇⊥h∇ · u +

(
3
4

− λ
)
h∇⊥∇ · u + 1

4
h∇∇ · u⊥ + 1

4
∇h∇ · u⊥)

+
(
λ2�hu · ∇⊥h + 1

4
λhu⊥ · ∇�h + 1

4
λh∇h · ∇∇ · u⊥ − 1

2
λh�h∇ · u⊥)

+
(

1
2
λ2h∇h · ∇�h − 1

2
λ2h(�h)2

)]
dx. (C 7)

We repeat our strategy for the quadratic-in-u terms, i.e.

L22 =

∫
h(u⊥ + ∇h) ·

[
− 3

4
u̇ − 3

4
∇uu − 1

4
∇u⊥u⊥

+ 1
2
λ∇⊥∇hu − 1

2
λ∇u⊥∇h +

(
3
4

− λ
)
(∇⊥u)T ∇h + 1

4
(∇u⊥)T ∇h

+
(

3
4

− λ
)
∇⊥h∇ · u +

(
3
4

− λ
)
h∇⊥∇ · u + 1

4
h∇∇ · u⊥ + 1

4
∇h∇ · u⊥]

dx + L
deg
22 ,

(C 8)

where the two terms involving ∇⊥h∇ · u and h∇⊥∇ · u do not contribute to L
deg
22 , and

the others expand to

L
deg
22 =

∫ [
− 1

2
λh∇h · ∇⊥∇hu +

(
1
2
λ − 1

4

)
h∇h · ∇u⊥∇h

−
(

3
4

− λ
)
h∇h · ∇⊥u∇h +

(
1
4
λ − 1

4

)
h2∇h · ∇∇ · u⊥ − 1

4
h|∇h|2∇ · u⊥

+ λ2h�hu · ∇⊥h + 1
4
λh2u⊥ · ∇�h − 1

2
λh2�h∇ · u⊥

+ 1
2
λ2h2∇h · ∇�h − 1

2
λ2h2(�h)2

]
dx. (C 9)
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To bring these terms into standard form, we use the following identities:∫
h∇h · ∇u⊥∇h dx = −

∫
hu⊥ · (∇h�h + ∇∇h∇h + h−1∇h|∇h|2) dx, (C 10)

∫
h∇h · ∇⊥u∇h dx = −

∫
hu⊥ · ∇⊥∇⊥h∇h dx

=

∫
hu⊥ · (∇∇h∇h − ∇h�h) dx, (C 11)

∫
h|∇h|2∇ · u⊥ dx = −

∫
hu⊥ · (h−1∇h|∇h|2 + 2∇∇h∇h) dx, (C 12)

∫
h2�h∇ · u⊥ dx = −

∫
hu⊥ · (h∇�h + 2∇h�h) dx, (C 13)

∫
h2∇h · ∇∇ · u⊥ dx = −

∫
(h2�h∇ · u⊥ + 2h|∇h|2∇ · u⊥) dx

=

∫
hu⊥ · (h∇�h + 2∇h�h + 2h−1∇h|∇h|2 + 4∇∇h∇h) dx.

(C 14)

The second step in (C 11) is based on identity (A 9). Collecting terms, we find

L
deg
22 =

∫
hu⊥ ·

[(
1
2

− λ2
)
∇h�h +

(
λ − 1

4

)
h∇�h + (2λ − 1)∇∇h∇h

]
dx

+

∫ [
1
2
λ2h2∇h · ∇�h − 1

2
λ2h2(�h)2

]
dx. (C 15)

Since our goal is to eliminate all terms that are quadratic or cubic in u, we must
choose v′ to be equal to the terms in the square bracket in (C 8) plus arbitrary terms
that only depend on h, i.e.

v′ = v′
free − 3

4
u̇ − 3

4
∇uu − 1

4
∇u⊥u⊥

+ 1
2
λ∇⊥∇hu − 1

2
λ∇u⊥∇h +

(
3
4

− λ
)
(∇⊥u)T ∇h + 1

4
(∇u⊥)T ∇h

+
(

3
4

− λ
)
∇⊥h∇ · u + 1

4
∇h∇ · u⊥ +

(
3
4

− λ
)
h∇⊥∇ · u + 1

4
h∇∇ · u⊥, (C 16)

where we choose

v′
free = α∇h�h + βh∇�h + γ ∇∇h∇h + µh−1∇h|∇h|2. (C 17)

As in the first-order computation, we only introduce terms that have the same
homogeneity as those already present.

If we substitute in this expression for v′ directly, we see that there are five different
terms that are quartic in h. However, integration by parts shows that there are actually
only three independent terms at this level:∫

h2∇h · ∇�h dx = −
∫

(h2 (�h)2 + 2h|∇h|2�h) dx, (C 18)

∫
h∇h · ∇∇h∇h = −1

2

∫
(h|∇h|2�h + |∇h|4) dx. (C 19)

We can eliminate the remaining mixed term via∫
h2∇h · ∇�h dx = −

∫
(h2∇∇h : ∇∇h + 2h∇h · ∇∇h∇h) dx, (C 20)
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so that, using identities (C 18) and (C 19), we find∫
h|∇h|2�h dx = 1

3

∫
(h2∇∇h : ∇∇h − h2(�h)2 − |∇h|4) dx. (C 21)

Equations (C 18) and (C 19) then read∫
h2∇h · ∇�h dx =

∫ (
2
3
|∇h|4 − 1

3
h2(�h)2 − 2

3
h2∇∇h : ∇∇h

)
dx, (C 22)

∫
h∇h · ∇∇h∇h =

∫ (
1
6
h2(�h)2 − 1

3
|∇h|4 − 1

6
h2∇∇h : ∇∇h

)
dx. (C 23)

Substituting all intermediate expressions back into (5.9), we obtain the final form
(5.29) of transformed L2 Lagrangian.
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